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Abstract— For widespread real-world applications, it is ben-
eficial for robots to explore Federated Learning (FL) set-
tings where several robots, deployed in parallel, can learn
independently while also sharing their learning with each
other. This work explores a simulated living room environment
where robots need to learn the social appropriateness of their
actions. We propose Federated Root (FedRoot), a novel weight
aggregation strategy which disentangles feature learning across
clients from individual task-based learning. Adapting popular
FL strategies to use FedRoot instead, we present a novel FL
benchmark for learning the social appropriateness of different
robot actions in diverse social configurations. FedRoot-based
methods offer competitive performance compared to others
while offering sizeable (up to 86% for CPU usage and up
to 72% for GPU usage) reduction in resource consumption.
Furthermore, real-world interactions require social robots to
dynamically adapt to changing environmental and task settings.
To facilitate this, we propose Federated Latent Generative
Replay (FedLGR), a novel Federated Continual Learning (FCL)
strategy that uses FedRoot-based weight aggregation and em-
beds each client with a generator model for pseudo-rehearsal of
learnt feature embeddings to mitigate forgetting in a resource-
efficient manner. Our benchmark results demonstrate that
FedRoot-based FCL methods outperform other methods while
also offering sizeable (up to 84% for CPU usage and up to
92% for GPU usage) reduction in resource consumption, with
FedLGR providing the best results across evaluations.

I. INTRODUCTION

As advances in Artificial Intelligence (AI) gear social
robots towards a ubiquitous application, they are expected
to be deployed across environmental and contextual settings,
interacting with several users at a time and learning different
tasks [1]. Each robot, operating in its unique application
settings, should be able to adapt to the dynamics of its
ever-changing environment while also being sensitive to the
changing preferences of the users it interacts with [2]. Such
an understanding of social dynamics and norms [3] can
help robots effectively navigate complex social settings while
also offering enriching interaction experiences to their users.
Moreover, given the vast array of potential applications [4],
robots can benefit from sharing knowledge and individual
experiences with one another. Under such complex and
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diverse application settings, there is a need to move be-
yond centralised platforms towards more distributed learning
paradigms, enabling robots to keep learning continually
while also sharing their learning with others.

Moving beyond centralised learning paradigms, where
individual robots only gather data and send it to a central
server to be aggregated and used to train a single global
model for application, Federated Learning (FL) [5] (see
Fig. 1; left) offers an efficient distributed learning paradigm
where individual robots can learn independently from their
own unique experiences, updating their learning models
using only the data collected by them locally. Over time,
these local updates can be aggregated across the centralised
server, in the form of model updates that can inform training
the unified global model. FL allows for a privacy-preserving
learning paradigm where local data is never shared with a
centralised server. FL solutions have been used popularly in
embedded or EdgeAI devices [6] that benefit from distributed
learning settings [7] gathering and processing their own
data but sharing their learning towards training a global
aggregated model [8]. More recently, FL has been explored
for robotic and autonomous systems [1], [9] allowing for
collaborative learning across robots, learning from each
others’ experience while maintaining end-user privacy.

Another challenge faced by social robots operating in
dynamic human-centred environments is to effectively dis-
cern novel information from past experiences and adapt their
learning models to accommodate this new knowledge [10].
As the real-world is not static and changes dynamically [11],
each individual robot may learn with incremental and/or
sequential streams of data where data is not independent
and identically distributed (i.i.d). This may result in the
robot forgetting past knowledge, overfitting to the current
task or data. Even though FL allows for model aggregation
across client robots, such forgetting locally will cause the
globally aggregated model to also forget past knowledge.
Continual Learning (CL) [11] can help address this problem
by enabling individual robots to adapt their learning with
incrementally acquired data from non-stationary or changing
environments [2]. This allows robots to accumulate new
information locally while preserving previously seen knowl-
edge. Combining the principles of FL and CL, Federated
Continual Learning (FCL) [1], [12] (see Fig. 1; right) allows
for individual robots, learning incrementally in their unique
settings, to also benefit from other robots’ learning. Each
robot periodically sends only their model parameters to the
centralised server where the knowledge from all agents is
aggregated into a unified model which is sent back.
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Fig. 1: Federated Learning (FL) (left): Local models are aggregated on the server without sharing data. Federated Continual Learning
(FCL) (right): Individual robots incrementally learn tasks, periodically sharing model updates with each other.

Fig. 2: MANNERS-DB: A Living Room scenario with a robot [13].

In this paper, we explore a simulated home environment
with humans and animals where the robot is required to learn
the social appropriateness of different tasks. We explore the
MANNERS-DB dataset [13] as it has been used previously
for CL-based [13] and zero-shot learning [14]. MANNERS-
DB provides social-appropriateness ratings for different high-
level robot actions in simulated living room settings (see
Fig. 2), where the robot learns these actions in different
social configurations. To simulate several robots deployed
in parallel under similar living room settings, the dataset
(training data) is split evenly across these robots (clients),
with a shared test-set. We extend our preliminary work [15]
benchmarking FL and FCL on the MANNERS-DB using the
predefined 29−d scene descriptor vectors to learning end-to-
end, directly from scene renders. We propose Federated Root
(FedRoot) averaging, a novel FL strategy which disentangles
feature-based learning across clients from individual task-
based learning. Under FedRoot, only the feature extrac-
tion layers are aggregated between clients however task-
based learning is kept strictly local enhancing the resource-
efficiency and privacy for FL. Adapting popular FL strategies
to use FedRoot instead, we present a novel FL benchmark for
learning the social appropriateness of different robot actions
in diverse social configurations. Extending FedRoot to FCL
settings, we propose Federated Latent Generative Replay
(FedLGR), a novel FCL strategy that combines FedRoot
with LGR [16] by adding a local generator model to the
client for efficient pseudo-rehearsal of learnt features in
order to mitigate forgetting. For successive tasks, pseudo-
samples of previously seen tasks are generated and mixed

with the current task’s data to simulate i.i.d data settings.
We benchmark FedLGR against popular CL adaptations of
FL strategies, with and without FedRoot-based aggregation,
on their ability to learn socially appropriate robot behaviours
in a task-incremental manner. Both FedRoot and FedLGR re-
duce the memory and resource footprint of their FL and FCL
counterparts, without compromising model performance.

II. RELATED WORK

A. Socially Appropriate Robot Behaviours

Human interactions are governed by different social norms
laying out expected behaviours from individuals which may
be considered socially appropriate by others [17]. For social
robots operating in human-centred environments, where in-
teraction contexts and individual user preferences can vary
widely, these robots must be able to comprehend and respond
to the unique dynamics of each contextual setting [18].
This not only enhances their ability to navigate complex
social situations but also improves the users’ impressions
of the robots and their acceptance in social Human-Robot
Interaction (HRI) [19]. Furthermore, social robots need to
continually learn from their interactions and adjust their
behaviours accordingly [20]. Whether it is effectively navi-
gating complex social environments [21], learning approach
and positioning behaviours [22], [23] or learning task-
specific behaviours [13], it is essential for robots to consider
the social-appropriateness of their behaviours in order to
comply with social norms [3]. With distributed deployment
increasingly becoming a reality, there is a need to investigate
federated application frameworks that allow robots to learn in
their own unique environments while also informing a global
learning of generalisable social norms and preferences [1].
This works aims to move in this direction in a more resource-
efficient and privacy preserving manner.

B. Federated Learning

Distributed learning settings can be particularly desir-
able for social robots, to understand and learn socially
appropriate behaviours, depending upon the context of the
interaction, environmental factors as well as individual user
preferences [1]. Federated Learning (FL) [5] enables a
network of distributed client devices (such as robots) to



learn individually with locally gathered data while updat-
ing their model parameters towards aggregating a global
learning model (server) that combines these updates from
each individual device, over successive update rounds, and
distributes this model back to individual clients. This way,
each client shares their knowledge with the other clients,
without sharing any local data, and gets updated with global
model which combines the knowledge from other clients.
Strategies such as Federated Averaging (FedAvg) [8] offer a
straightforward approach for weight aggregation by collating
individual client model weights and computing a weighted
average in the form of the global model. However, FedAvg
is sensitive to data imbalances and concepts drift challenges,
especially in non-i.i.d data settings. Several improvements
have been proposed on FedAvg, for instance, FedBN [24]
that adapts FedAvg by keeping the parameters for all the
BatchNorm layers ‘strictly local’, that is, all other model
weights are aggregated across clients apart from the Batch-
Norm parameters. Similar to FedBN, FedProx [25] also
proposes improvements over FedAvg by allowing for only
partial aggregation of weights by adding and tracking a
proximal term to FedAvg. FedOpt [26] offers a ‘general
optimisation framework’ where each client uses a client
optimiser to optimise on local data while the server updates
apply a gradient-based server optimiser to the aggregated
model weights. FedDistill [27], on the other hand, aims to
improve the ability of the clients to deal with heterogeneous
data conditions by using knowledge distillation [28]. Each
client maintains two models: (i) a local copy of the global
model and (ii) a personalised model that acts as a teacher
to the student global model. The updated student model is
then aggregated across clients. In this work, we adapt these
methods for a regression-based task, learning to predict the
social appropriateness of different robot actions.

C. Federated Continual Learning

As robots in real-world settings continually encounter
novel information, under non-i.i.d conditions, their abil-
ity to remember previously learnt tasks may progressively
deteriorate, resulting in forgetting [29]. Continual Learn-
ing (CL) [11], [30] strategies may enable robots to learn
and adapt throughout their ‘lifetime’, balancing incremental
learning of novel information with the retention of past
knowledge. Federated Continual Learning (FCL) [12] com-
bines FL and CL principles, enabling individual robots to
incrementally learn without forgetting on streams of gathered
data. Individual robots learn a series of local tasks while
periodically updating the parameters of a global aggregated
model that combines updates from individual clients, over
successive update rounds. Several recent works [12] explore
FCL for vision [31] and natural language processing [32]
applications, however very little work has been done to
explore its application for social robots [1]. Adapting FL
approaches by adding CL-based objectives can offer straight-
forward solutions for FCL. For instance, regularisation-based
methods such as Elastic Weight Consolidation (EWC) [33],
EWCOnline [34], Synaptic Intelligence (SI) [35] or Memory

Fig. 3: Federated Root (FedRoot): Local model split into (i) Root
for feature extraction and (ii) Top for task-based learning. Only
model Root is aggregated across clients while Top remains local.

Aware Synapses (MAS) [36] can be used to apply penalties
on weight updates between old and new tasks to help mitigate
forgetting. Rehearsal strategies such as Naive Rehearsal
(NR) [37] can be used to maintain local memory buffers
for each robot to store and rehearse previously seen data
to preserve knowledge. Alternatively, an efficient pseudo-
rehearsal of data [38] or features [16] can help mitigate
forgetting by maintaining generators that model local data
distributions for previously seen tasks. In this work, we
augment FL with regularisation-based CL objectives for
multi-label regression, predicting social appropriateness of
the different robot actions under different contextual settings.

III. METHODOLOGY

A. FedRoot: Federated Root for Feature Aggregation

With several robotic clients, deployed in parallel, FL en-
sures end-user privacy as data remains strictly local for each
client and is never shared with others. Yet, as the learning
models, both in terms of learnt features as well as task-based
learning layers are shared with the server, there might still be
‘information/data leak’ [39] that may reveal how end-users
interact with individual robots. Furthermore, as the robots
may be equipped with Deep Neural Network (DNN)-based
learning models that process high-dimensional input data,
aggregating individual model weights into a global model
can be computationally expensive [40]. To address the above-
mentioned challenges, we propose Federated Root (FedRoot)
(see Fig. 3) as a novel model aggregation FL strategy that
splits client learning models into two modules:

1) Root (R): The Root constitutes the feature extraction
layers of the learning model. For example, for Convolutional
Neural Network (CNN)-based learning models, as imple-
mented in this work, the Conv layers would constitute the
root of the model that learn meaningful and relevant features
from input images. For robots operating in home scenarios,
as discussed here, the root learns efficient and descriptive
scene embeddings that can help summarise each scene.

2) Top (T): The Top of the model, on the other hand, con-
stitutes the task-based learning (classification or regression)
Fully Connected (FC) layers. Using the Root-extracted fea-
tures, the top of the model is used for task-based predictions,
for example, learning to predict the social appropriateness of
different robot actions.



Splitting model learning into two parts allows for robots
to effectively share their learning with other clients while
also protecting end-user privacy. The model is trained in
an end-to-end manner, however, only the root, that is,
the feature extraction layers, from individual client models
gets aggregated across clients, over repeated aggregation
rounds. This allows for the clients to improve their feature-
embeddings, making them more robust, benefiting from the
diversity of data settings experienced by each individual
client. Yet, client-specific data as well as the task-based
learning from the data, for instance end-user preferences
on social appropriateness of individual robot behaviours, is
kept ‘strictly local’. Since FedRoot is proposed as a weight
aggregation strategy, we adapt popular FL approaches (see
Section II-B) to use FedRoot instead.

B. FedLGR: Federated Latent Generative Replay

Real-world application adds another complexity for
robotic clients with respect to incremental learning where
they are exposed to information in an incremental manner
and have to constantly learn new tasks while preserving past
knowledge [2], [29]. While replay-based CL may provide a
straightforward approach for remembering past information
by storing and periodically replaying past data [37], this may
not always be possible due to memory constraints or privacy
and compliance reasons. Pseudo-rehearsal approaches such
as Deep Generative Replay (DGR) [41], on the other hand,
use probabilistic or generative models that learn the inherent
data statistics of previously seen data and draw pseudo-
samples as and when needed, to be replayed to the model.
These generative models, however, become hard to train as
the number of tasks increases as the generator needs to learn
to reconstruct high-quality discriminative pseudo-samples,
adding a significant computational expense to the model.
Generative feature rehearsal approaches such as Latent Gen-
erative Replay (LGR) [16] offer resource-efficient pseudo-
rehearsal strategies that combine the benefits of DGR [41],
with using low-dimensional latent features [42].

Under FCL learning settings clients not only need to
incrementally learn on the acquired ‘local data’ ensuring they
do not forget past knowledge, they also need to aggregate
this learning in a centralised global model. To achieve this,
we propose Federated Latent Generative Replay (FedLGR)
(see Fig. 4) as a novel FCL strategy that applies LGR-based
pseudo-rehearsal [16] under federated learning settings mak-
ing use of FedRoot-based weight aggregation.

FedLGR uses a scholar-based architecture [16] that con-
sists of three modules: (i) a Root to extract latent feature
representations, (ii) a Top to learn task-discriminative infor-
mation, and (iii) a Generator to reconstruct and rehearse
latent features. Under FedLGR, each client locally uses LGR
to continually and incrementally learn the social appropriate-
ness of robot actions under different contextual settings. This
learning is then shared with other clients by aggregating Root
weights using FedRoot. At each time-step, the learning for
each client locally consists of the following steps:

Fig. 4: Federated Latent Generative Replay (FedLGR): Local
model split into (i) Root for feature extraction, (ii) Top for task-
based learning and (iii) Generator for pseudo-rehearsal of features.
Only Root is aggregated across clients while Top and Generator
remain local.

1) The root and top for the scholar are updated with the
current task’s data, however at different learning rates.
While the top is trained rapidly to learn task-discriminative
information, the root is updated slowly ensuring the new
data does not completely overwrite previously seen infor-
mation. This is an important step as LGR [16] is based on
the assumption that if the latent-space distribution of root-
extracted features remains relatively static between model
updates, the extracted features can be effectively used to
rehearse past knowledge [42].

2) For training the generator, the Root-extracted feature rep-
resentations (R(x)) for the current task’s data (x) are
interleaved with generated features (R′

x) for all previously
seen tasks. Training the generator on both R(x) and R′

x

(only R(x) is used for Task 1) ensures that the updated
generator encodes both new and old tasks. R′

x is passed
to the top to obtain labels T (R′

x).
3) Once the generator is updated, the top of the solver is

updated using the current task data ⟨R(x), y⟩, interleaved
with labelled latent pseudo-samples ⟨R′

x, T (R
′
x)⟩ gener-

ated for previously seen tasks. The root is then updated
slowly using only current task’s data.

Training on each task consists of several rounds of weight ag-
gregations, where FedRoot is used to aggregate root module
weights across clients. The top and the generator for each
client are kept ‘strictly local’ ensuring task-discriminative
information is never shared.

IV. EXPERIMENTS

A. MANNERS-DB Dataset

For our proof-of-concept evaluations on FL and FCL for
learning socially appropriate robot behaviours, we explore
the MANNERS-DB dataset [13] that consists of Unity-
generated scenes of the Pepper robot co-inhabiting a living
room (see Figure 2) with other humans and animals under
different social settings. MANNERS-DB has been explored
for CL-based [13] and zero-shot [14] learning, however, not
for FCL. For each scene, the robot can perform 8 different
actions, that is, vacuuming, mopping, carrying warm food,
carrying cold food, carrying big objects, carrying small
objects, carrying drinks and cleaning/starting conversations



either within a circle of influence or in the direction of
operation (see Figure 2). Crowd-sourced annotations are
provided for the social appropriateness of each of these
actions for every scene (≈ 1000 scenes), labelled on a 5-
point Likert scale, ranging from very inappropriate to very
appropriate. For both FL and FCL evaluations, the data is
split into training and test splits in the ratio of 3 : 1. The
training data is further split amongst the different clients (2
or 10) with a shared test-set used for evaluation. For FCL
evaluations, the training set of individual clients is further
split into two tasks, that is, samples depicting the robot
operating with an circle (Task 1) and in the direction of the
arrow (Task 2). For training the models, normalised RGB
images are used, resized to (128×128×3) due computational
restrictions of training multiple clients in parallel on GPU.
Since MANNERS-DB is a relatively small dataset consisting
of ≈ 1000 images, we evaluate the different approaches
both without and with data-augmentation. We use random
(p = 0.5) horizontal flipping and random (p = 0.5) rotation
(up to 10◦) in either direction to augment the dataset. For a
fair comparison, results are presented individually for without
and with augmentation comparisons.

B. Implementation Details

For each approach, a Convolutional Neural Network
(CNN)-based model is used consisting of two parts: (i) a
Conv module that uses the popularly used MobileNet-
V2 [43] backbone to extract scene features, followed by
an AdaptiveAvgPool layer for dimensionality reduction, and
(ii) an FC module where the 1280−d flattened scene features
are passed through a FC layer consisting of 32 units followed
by the 8−unit output layer. Each layer in the FC module is
followed by BatchNorm layer and uses a linear activation
with the output layer predicting the social appropriateness
of all 8 robot actions. All models are trained using the
Adam optimiser (β1=0.9, β2=0.999) with learning rate of
lr=1e−3. All methods are implemented using the Flower1

and PyTorch Python libraries. The FL and FCL experiments
are run for 2 − 10 clients, attuned to a potential real-world
evaluation to be conducted in the future using physical
robots. For brevity, results for only 2 and 10 clients are
presented. Model hyper-parameters such as the regularisation
coefficients for FCL approaches are optimised using a grid-
search. For without augmentation experiments, the BatchSize
is empirically set to 16 for two clients and 8 for ten
clients due to the overall low number of samples per client.
When using with augmentation, BatchSize is set to 16. All
models are trained using an Mean Squared Error (MSE) loss,
computed as an average across the 8 actions. Each client
agent trains on its own split of the training data but a shared
test-set is used for model evaluation. We report the average
MSE loss averaged across the 8 actions and all clients.

C. Evaluation Metrics

Predicting the social-appropriateness for each robot ac-
tion requires transforming FL and FCL methods to use

1https://flower.dev

TABLE I: Federated Learning Results for the MANNERS-DB
Dataset for Two (left) and Ten (Right) Clients. Bold values denote
best while [bracketed] denote second-best values.

Two Clients Ten Clients

Method Loss ▼ RMSE ▼ PCC ▲ Loss ▼ RMSE ▼ PCC ▲

W/O Augmentation

FedAvg 0.264 0.510 [0.508] 0.220 0.467 0.487
FedBN 0.310 0.553 0.486 0.226 0.471 0.486
FedProx [0.262] [0.507] 0.513 [0.211] [0.459] 0.517
FedOpt 0.245 0.492 0.501 0.210 0.458 [0.492]
FedDistill 0.276 0.522 0.475 0.233 0.481 0.470

FedRootAvg 0.276 0.522 0.482 0.231 0.477 0.459
FedRootBN 0.272 0.518 0.498 0.263 0.510 0.420
FedRootProx 0.264 0.511 0.481 0.240 0.486 0.447
FedRootOpt 0.285 0.530 0.473 0.240 0.486 0.460
FedRootDistill 0.294 0.539 0.489 0.305 0.550 0.363

W/ Augmentation

FedAvg 0.192 0.435 0.547 0.178 [0.420] 0.586
FedBN 0.205 0.447 [0.554] 0.188 0.429 0.567
FedProx 0.208 0.451 0.536 0.173 0.412 [0.581]
FedOpt 0.204 0.450 0.506 [0.177] [0.420] 0.568
FedDistill 0.221 0.468 0.538 0.205 0.449 0.560

FedRootAvg 0.192 0.433 0.547 0.198 0.440 0.563
FedRootBN 0.197 0.442 0.558 0.194 0.439 0.539
FedRootProx 0.186 0.427 0.541 0.196 0.439 0.552
FedRootOpt [0.190] [0.432] 0.528 0.206 0.450 0.549
FedRootDistill 0.225 0.469 0.525 0.222 0.465 0.539

regression-based objectives, using the following metrics:
• Root Mean Squared Error (RMSE): We report the RMSE

values which are calculated for the test-set, averaged across
the 8 actions across all clients. RMSE scores are used to
compare our results with the baseline provided with the
MANNERS-DB dataset [13].

• Pearson’s Correlation Coefficient (PCC): In addition to
an absolute metric such as the RMSE, we also evaluate
the predicted social appropriateness values relative to the
ground-truth using the PCC [44] scores. PCC scores are
calculated on the test-set individually for each of the 8
actions, for each client. Average scores across all actions
and all clients are reported.

• CPU Usage (s): To evaluate the resource efficiency of
FL and FCL approaches, CPU usage is reported as the
CPU time (in seconds) allocated to training each client,
on average. This is calculated as the CPU time utilised by
each client, across all rounds of weight aggregation.

• GPU Usage (%): Similar to CPU usage, GPU usage is
also important to evaluate the resource efficiency of the
proposed methods. Since we have a single GPU simulation
set-up, we report the percentage (%) of the GPU allocated
per client, on average. GPU usage is also calculated using
Nvidia’s nvidia-smi tool, logged at different intervals
during the training process, and averaged over the entire
training time for each client.

V. RESULTS

A. Federated Learning Benchmark

Table I presents the FL benchmark results on the
MANNERS-DB dataset comparing popular FL strategies and
their FedRoot-based adaptations for two and ten clients,



TABLE II: Average CPU Usage (s) and GPU Usage (%) per client, per aggregation round for Federated Learning experiments.

Metric FedAvg FedRootAvg FedBN FedRootBN FedProx FedRootProx FedOpt FedRootOpt FedDistill FedRootDistill

CPU Usage (s) ▼ 19.06 2.55 (▼ 86.6%) 18.4 2.50 (▼ 86.4%) 18.98 2.54 (▼ 86.6%) 18.61 2.46 (▼ 86.7%) 19.46 2.61 (▼ 86.4%)

GPU Usage (%) ▼ 0.63 0.24 (▼ 61.9%) 0.93 0.27 (▼ 70.9%) 0.25 0.15 (▼ 40.0%) 0.69 0.19 (▼ 72.4%) 0.10 0.07 (▼ 30.0%)

TABLE III: Average CPU Usage (s) and GPU Usage (%) per client, per aggregation round for Federated Continual Learning experiments.

Metric FedAvg
EWC

FedRoot
EWC

FedAvg
EWCOnline

FedRoot
EWCOnline

FedAvg
MAS

FedRoot
MAS

FedAvg
SI

FedRoot
SI

FedAvg
NR

FedRoot
NR FedLGR

CPU Usage (s) ▼ 24.17 3.87 (▼ 83.9%) 25.05 4.97 (▼ 80.2%) 22.41 5.36 (▼ 76.1%) 20.32 3.91 (▼ 80.7%) 25.97 4.05 (▼ 84.4%) 4.06

GPU Usage (%) ▼ 0.57 0.04 (▼ 92.9%) 0.13 0.03 (▼ 76.9%) 0.04 0.01 (▼ 75.0%) 0.10 0.05 (▼ 50.0%) 0.06 0.04 (▼ 33.3%) 0.02

both without and with data augmentation, respectively. For
without data augmentation experiments with two and ten
clients FedOpt and FedProx emerge as the best performing
approaches, on average. The ‘general optimisation frame-
work’ of FedOpt, with Adam-based client and server optimis-
ers are able to efficiently aggregate learning across clients,
resulting in the robust performance of the model. FedProx,
on the other hand, adds a proximal term µ = 0.1 (similar
to [25]) to FedAvg and updates the objective for each client
to minimise Fk(ω)+

µ
2 ||ω−ωt||2 where Fk is the loss, ω are

the local model weights to optimise and ωt are the global
parameters at time-step t. For the proposed FedRoot variants
of the compared FL approaches, as task-discriminative top
weights are kept strictly local, we see an overall drop in
model performance. This is primarily due to the small size
of the MANNERS-DB dataset which does have enough data
samples for the FedRoot to optimise model performance,
given only feature extracting root is aggregated. However,
FedRoot offers sizeable reduction in CPU and GPU Usage
per client, per aggregation round, compared to the original
methods, as can be seen in Table II.

Data augmentation has a net positive impact on all models
with all approaches reporting better metrics, across evalua-
tions. With the larger amount of data available per client,
we see that FedRoot-based methods improve upon their
counterparts across all metrics, for the experiments with two
clients. Similar to without augmentation experiments, using
Adam-based client and server optimisation as well as adding
a proximal term to the model learning objective results in
the best performance, however here for FedRootOpt and
FedRootProx, respectively. Data available per client still re-
mains relatively low when split across ten clients, even when
using data augmentation. Thus, despite an overall improve-
ment compared to without augmentation results FedRoot-
based approaches are still not able to match the performance
of FedProx and FedOpt for ten clients, despite offering high
resource-efficiency.

B. Federated Continual Learning Benchmark

Table IV presents the FCL results on the MANNERS-DB
dataset adapting FedAvg and FedRoot-based weight aggrega-
tion strategies to use CL-based learning objectives to mitigate
forgetting under incremental settings. Evaluation metrics are
reported after training and testing on the data-split depicting
the robot operating within the circle of influence (Task 1) and

training on the data-split depicting the robot in the direction
of operation (Task 2) and testing on both the splits. Similar to
the FL benchmark, we compare the different FCL strategies
for two and ten clients as well as without and with data
augmentation. As federated averaging of weights struggles
with learning under non-i.i.d data settings [24], extending
these methods with CL-based objectives allows us to evaluate
how they can objectively contribute towards maintaining
model performance when learning incrementally.

Our results demonstrate that FedRoot-based approaches
are able to outperform their FedAvg-based counterparts
across most evaluations. However, similar to FL evaluations,
FedRoot-based methods struggle in the scarcity of data,
for instance the evaluations across ten clients without data
augmentation, resulting in much worse loss and RMSE
scores. Data augmentation has a net positive impact on model
performances, especially for FedRoot-based methods. Fur-
thermore, using FedRoot-based weight aggregation results
in a sizeable (up to 84% for CPU usage and 92% for GPU
usage) reduction in computational expense of running these
methods, per client, per aggregation round (see Table III).
This can be particularly beneficial for application in resource-
constrained devices such as social robots. The proposed
FedLGR approach performs the best across all evaluations.
This is especially true when data is scarce, that is learning
without using data augmentation across two and ten clients.
FedLGR is able to efficiently use pseudo-rehearsal of fea-
tures to maintain model performance after learning Task 2.

VI. DISCUSSION AND CONCLUSION

Social robots operating in dynamic real-world settings can
benefit from federated learning mechanisms where, learning
from and adapting towards their unique environmental and
data conditions, they can also share their learning with
other robots, benefiting from each others’ experiences. FL-
based approaches enable such a learning paradigm for robots
to aggregate model updates across individual agents into
a global model, while ensuring that end-user privacy is
preserved. However, the resource constraints inhibit such
learning settings resulting in most existing methods opting
for centralised learning, where end-user devices only collect
data for a centralised model to be trained, in isolation, for
later application in-the-wild. The proposed Federated Root
(FedRoot) weight aggregation strategy aims to address this
very challenge by splitting each client’s learning model into



TABLE IV: Federated Continual Learning Results for the MANNERS-DB Dataset for Two (left) and Ten (Right) Clients. Bold values
denote best while [bracketed] denote second-best values.

Two Clients Ten Clients

After Task 1 After Task 2 After Task 1 After Task 2

Method Loss ▼ RMSE ▼ PCC ▲ Loss ▼ RMSE ▼ PCC ▲ Loss ▼ RMSE ▼ PCC ▲ Loss ▼ RMSE ▼ PCC ▲

W/O Data-augmentation

FedAvgEWC 0.705 0.826 0.488 0.911 0.944 0.347 0.364 0.591 0.325 0.393 0.617 0.278
FedAvgEWCOnline 0.488 0.685 0.469 0.381 0.608 0.384 [0.328] [0.566] 0.373 [0.359] [0.589] 0.321
FedAvgMAS 0.568 0.740 0.570 0.363 0.597 0.357 0.421 0.641 [0.494] 0.464 0.674 0.357
FedAvgSI 0.488 0.686 [0.571] 0.675 0.811 0.343 0.451 0.665 0.323 0.376 0.598 0.306
FedAvgNR 0.403 0.634 0.491 [0.296] [0.538] 0.333 0.376 0.600 0.447 0.408 0.628 0.341

FedRootEWC 0.433 0.652 0.472 0.998 0.963 0.382 9.320 3.050 0.336 8.950 2.990 0.335
FedRootEWCOnline 0.614 0.778 0.436 0.447 0.659 0.400 9.170 3.030 0.330 9.560 3.090 [0.376]
FedRootMAS [0.397] [0.627] 0.429 0.569 0.740 0.422 8.860 2.980 0.363 8.750 2.960 0.369
FedRootSI 0.968 0.984 0.441 0.840 0.893 0.418 9.360 3.060 0.417 9.120 3.020 0.369
FedRootNR 0.762 0.870 0.325 0.287 0.533 [0.444] 0.446 0.656 0.462 0.482 0.677 0.339

FedLGR 0.252 0.499 0.599 0.465 0.677 0.534 0.299 0.539 0.515 0.320 0.553 0.421

W/ Data-augmentation

FedAvgEWC 0.669 0.807 0.420 0.348 0.584 0.395 0.397 0.624 0.472 0.433 0.653 0.456
FedAvgEWCOnline 0.495 0.702 0.438 0.629 0.788 0.376 [0.319] [0.561] 0.365 [0.329] [0.579] 0.363
FedAvgMAS 0.267 0.514 0.601 0.665 0.814 0.394 0.343 0.580 0.480 0.354 0.587 0.328
FedAvgSI 0.280 0.526 [0.546] [0.328] [0.568] 0.444 0.471 0.682 0.418 0.435 0.654 0.426
FedAvgNR 0.450 0.669 0.531 0.710 0.839 0.451 0.392 0.618 0.425 0.490 0.698 0.368

FedRootEWC 0.736 0.836 0.529 0.327 0.569 0.463 0.441 0.648 [0.543] 0.449 0.655 [0.467]
FedRootEWCOnline 0.517 0.712 0.398 0.446 0.661 0.363 0.688 0.805 0.446 0.612 0.761 0.405
FedRootMAS [0.265] [0.511] 0.492 0.616 0.782 0.436 0.797 0.851 0.542 1.030 0.930 0.439
FedRootSI 0.388 0.596 0.405 0.735 0.821 [0.478] 0.481 0.688 0.323 0.521 0.708 0.439
FedRootNR 0.781 0.875 0.491 0.368 0.604 0.354 0.539 0.728 0.268 0.409 0.635 0.447

FedLGR 0.230 0.478 0.531 0.493 0.699 0.479 0.288 0.528 0.563 0.317 0.560 0.482

aggregatable feature extraction layers, that is, model root
and private task-relevant top layers that learn to predict the
social appropriateness of different robot actions. The FL
benchmark results (see Table I and Table II) highlight the
competitive performance of FedRoot-based approaches with
sizeable reductions in CPU and GPU usage for each client.

Furthermore, real-world applications may require robots to
learn incrementally, for instance, in the form of developing
novel capabilities or applying existing capabilities under
novel contextual settings. In this work, we explore the
latter where robots need to learn the social appropriateness
of different actions depending upon the context in which
they are operating, that is, operating within the circle of
influence or in a particular direction of operation. We adapt
the proposed FedRootAvg weight aggregation strategy and
extend it by adapting popular CL-based learning objectives
presenting a novel FCL benchmark on the MANNERS-
DB dataset (see Table IV and Table III). In particular,
the proposed Federated Latent Generative Replay (FedLGR)
approach is seen to outperform other methods across all
evaluations. It implements a local generator for efficient
pseudo-rehearsal of latent features for mitigating forgetting,
where the top learns task-relevant information. Our work
contributes significantly to the fields of Federated Learning
and robotics, offering promising avenues for the development
of socially intelligent machines capable of learning and
adapting in a decentralized and resource-efficient manner.

A. Limitations and Future Work

We present novel FL and FCL benchmarks for learning
social appropriateness of high-level robot behaviours in

simulated home settings. With our motivating results, we
wish to conduct a user study with 2+ robots operating in
different living room settings, sharing their knowledge with
each other. However, MANNERS-DB is a relatively small
dataset which limits our evaluations into the generalisability
of proposed approaches across a large number of clients. In
future, we wish to expand the MANNERS-DB dataset to
include more scenes as well as different robot embodiments
such as Pepper, Nao, PR2 robots, and points-of-view (PoVs)
(robot-centric and scene-centric) to extend our evaluations
(both FL and FCL), under simulation, to 100+ clients. This
would result in a more generalisable evaluation for large-
scale federated application for robots in diverse real-world
settings. Additionally. it will be beneficial to explore further
the scalability of FedRoot and FedLGR in more complex or
dynamic environments, especially when data is scarce and
data acquisition is complicated, as well as their applicability
to a broader range of tasks beyond social appropriateness.
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